
Structures and Derived Types
The components of a structure do not have to have the same type, whereas the elements of an array must
all have the same type.

The components of a structure are referenced by a name, whereas the elements of an array are referenced
by an integer value.

Structures may be nested (i.e., a component of a structure may be a structure or an array). The elements
of an array may be structures (all of the same type).

Structures can be used to build recursive data types, such as linked lists and trees.

Next slide

Structures and Derived Types

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod6/slides/tsld001.htm [4/12/2000 3:48:14 PM]

Consider the following structure:

 ____ number
 /
 ____ name / __ street
 / / __/
 / _ address __/_/_____ city
 / __/ _
person __/__/ __
 __ \ __ state
 \ __ \
 \ _ phone ___ ___ zip_code
 \ \ _
 ___ remarks \ _
 \ ____ area_code
 \
 ______ number

Previous slide Next slide

person

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod6/slides/tsld002.htm [4/12/2000 3:48:14 PM]

Defining Derived Types
To use structures, a new type, a derived type, must be defined. Then variables that are structures are
declared to be that type.

type phone_type
 integer :: area_code, number
end type phone_type

type address_type
 integer :: number
 character (len = 30) :: street, city
 character (len = 2) :: state
 integer :: zip_code
end type address_type

Previous slide Next slide

defining

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod6/slides/tsld003.htm [4/12/2000 3:48:14 PM]

type person_type
 character (len = 40) :: name
 type (address_type) :: address
 type (phone_type) :: phone
 character (len = 100) :: remarks
end type person_type

Learn more about derived type definitions.

Previous slide Next slide

persontype

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod6/slides/tsld004.htm [4/12/2000 3:48:14 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/dtdef.html

Declaring Structures

type (person_type) :: joan

type (person_type), dimension (1000) :: &
 black_book

Previous slide Next slide

declaring

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod6/slides/tsld005.htm [4/12/2000 3:48:14 PM]

Referencing Structure Components
Joan's address is

joan % address

The area code of the third person in the little black book is:

black_book (3) % phone % area_code

Learn more about structure components.

Previous slide Next slide

referencing

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod6/slides/tsld006.htm [4/12/2000 3:48:14 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/component.html

Structure Constructor
Each derived type has a structure constructor that builds values of that type.

joan % phone = phone_type (505, 2750800)

joan = person_type ("Joan Doe", &
 john % address, &
 phone_type (505, fax_number - 1), &
 "Same address as husband John")

Learn more about structure constructors.

Previous slide Next slide

constructor

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod6/slides/tsld007.htm [4/12/2000 3:48:14 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/dtcon.html

Operations on Structures
The only defined operations on structures are assignment and input/output.

black_book (7) = joan

For formatted I/O, there must be an edit descriptor for each ultimate component.

print "(i3, i7)", joan % phone

Previous slide Next slide

operations

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod6/slides/tsld008.htm [4/12/2000 3:48:15 PM]

Default Initialization (F95)
A default value may be given to a component of a derived type. When a structure of this type is declared
or allocated, the component is initialized.

program test_def_init

 implicit none

 type string
 integer :: length = 0
 character (len=99) :: s = ""
 end type string

 type (string) :: s1, sa(99)

 print *, s1%length
 sa(93) = string(sa(93)%length + 3, "xxx")
 print *, sa(93)

end program test_def_init

Learn more about default initialization.

Previous slide Next slide

definit

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod6/slides/tsld009.htm [4/12/2000 3:48:15 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/definit.html

Type Equivalence
In order for actual and dummy arguments of derived type to match correctly, they must be the same type.

Unless they are sequence types (see below), this means they must be the same type. The only practical
way to achieve this is to put the type definition in a module and use the module in both the calling and
called procedures.

Previous slide Next slide

equivalence

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod6/slides/tsld010.htm [4/12/2000 3:48:15 PM]

The sequence Statement
A derived type definition may contain the sequence statement, consisting of just the keyword. This
indicates that the storage for the components of the structure being defined are laid out in a specific way,
allowing structures of that type to work with other features depending on storage layout, such as
equivalence and common.

type polar
 sequence
 real rho, theta
end type polar

Previous slide

sequence

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod6/slides/tsld011.htm [4/12/2000 3:48:15 PM]

	hpc.mil
	Structures and Derived Types
	person
	defining
	persontype
	declaring
	referencing
	constructor
	operations
	definit
	equivalence
	sequence

